

Solar Energy and Storage Technology Economics

Ardeth Barnhart and Dr. Joseph Simmons Co-Directors, Arizona Research Institute for Solar Energy (AzRISE) University of Arizona – www.azrise.org

AzRISE

Research, Development, Outreach

- Formed September 2007 at the University of Arizona
 - Funding ABOR, University of Phoenix, TEP, APS, DOE, SFAz
- Solar Energy Systems Development
 - Storage
 - Smart Grid
 - Demonstration Sites
 - Solar House, Solar Car, Desalination
- Basic Research
 - Seed Projects
 - New Photovoltaic Materials/ Solar Concentrators
- Testing PV Test Site
- Economic and Policy analysis
- Education and Outreach

U.S. Primary Energy Production by Major Source (2008)

Source: Energy Information Administration, Annual Energy Review 2008, Table 1.2. (June 2009)

D

Solar has short-term intermittency due to weather

Energy Storage Technologies must be able to provide energy and power combinations

- Wholesale markets
- Upgrade deferral
- Retail markets
- Operating reserves

Data from Sandia Report 2002-1314

Benefits of Energy Storage

- Generation
 - Arbitrage
 - Renewable energy integration
- Delivery
 - Capacity upgrade deferral
- End Use
 - Renewable energy integration
 - Energy management
 - Backup power
 - Power quality

Peak Demand Reductions
Improved asset utilization
Air emission reductions
Improved reliability

www.aemogas.com.au

Electricity network

A New Day: energy storage price & performance comparisons

Storage Technologies Primarily for Energy (kWh) Applications

Technology	\$/kWh	Rater Power (MW)	Efficiency	Lifetime	Discharge Time (hours)
Pumped Hydro	250 - 260	20-2,400	78 <mark>- 8</mark> 3%	11,000+	10
CAES	550 - 650	110 - 290	50 - 75%	11,000+	10
Flow batteries	500 - 1,000	0.05 - 8	65 - 80%	500+	8
NaS batteries	2,500 - 3,750	0.05 – 50	70 – 80%	3,000+	7
NiCad batteries	610 - 1,700	0.01 - 27	60 – 65%	1,000+	4

Storage Technologies Primarily for Power (kW) Applications

Technology	\$/kW	Rater Power (MW)	Efficiency	Lifetime	Max Discharge Time (minutes)
NaS batteries	3,000 - 4,000	0.05 - 50	70 – 80%	3,000+	300
Li-Ion batteries	1,000 - 4,500	0.005 – 1	90 – 95%	20,000+	15
NiCad batteries	1,560 - 3,780	0.01 - 27	60 - 65%	1,000+	15
Lead acid	1,050 - 1,890	0.01 - 10	70 – 75%	250+	15
Flywheels	2,500 - 4,000	0.5 – 1	90 - 95%	500,000+	15
Super capacitors	N/A	0.003 – 0.01	90 – 98%	500,000+	seconds

PV and CAES Model

PV capacity	I.5 MW		
PV conversion efficiency	15%		
CAES natural gas heat rate	4300 Btu/kWh		
CAES storage capacity	3.5 MWh/I MW		
Roundtrip efficiency	80%		
Hours of storage	3		

(SOLON Single Axis – www.solon.com)

PV/CAES Cost Estimates	\$/kW	Total Cost
Storage system		
CAES Equipment	\$750	\$1,800,0000
IMW/ 250 kWh Battery	\$2000	\$2,000,000
Photovoltaic system		
Installed cost	\$4000	\$6,000,000
O & M	\$6	\$9,000
Natural Gas	\$/MMBtu	\$/kWh
Natural gas	\$6	\$0.0258
Total Capital Costs		
PV and CAES		\$9,809,000
Federal ITC		\$1,803,150
AZ State Rebates		\$25,000
Total		\$7,386,850

Energy Arbitrage Revenues

Cumulative revenue over 20-year period

* Includes inflation rate for natural gas and discount rate of 9%

Energy Arbitrage Revenues

D

Cumulative Net Revenues (3hr)

Arizona Research Institute for Solar Energy

LCOE Projections

Seasonal Mismatch Between Demand and Production

Solar Base-load Utility Scale Capability

D

Arizona Research Institute for Solar Energy

Conclusions

- Energy storage technologies have no emissions with the exception of CAES.
- Constraints
 - Current technologies have demonstrated capabilities for limited storage
 - Cost is perceived as high
 - Need to develop long-term models to enable project financing
 - Lack of targeted credits
 - Cost recovery valuing efficiency
 - Ownership uncertainties

Energy storage technologies enable renewable energy integration

Goals

- Reduce cost of deployment
- Support R&D
- Accelerate market entry

Direct support

- Current DOE Programs to fund R&D and deployment
- Needs to receive direct R&D support (CCS)
 - Development of energy storage and renewable energy generation as a baseload generation option
- Storage-integrated renewable energy needs to receive direct support
 - Production tax multiplier
 - Climate legislation needs to reflect storage technologies
 - Dedicated incentive for dispatchable renewable energy

Conclusions

- Solar energy technologies integrated with Energy Storage can match peak demand and base-load requirements
 - Experts agree with this and calculations show feasibility
 - Critical need is a demonstration facility that can give utilities technical and economic assessments of performance of various components.
- Cost of solar energy technologies, especially PV, is driven down by increased manufacturing capacity and open competition and will soon (2012) fall below the minimum capital cost of building a coal or nuclear power plant before they become operational.

Ardeth Barnhart
 <u>ardethb@email.arizona.edu</u>
 Dr. Joseph Simmons
 <u>simmonsj@email.arizona.edu</u>

www.azrise.org

Comparison of water use by energy technology for the same energy production

